Three-body recombination at vanishing scattering lengths in an ultracold bose gas.

نویسندگان

  • Zav Shotan
  • Olga Machtey
  • Servaas Kokkelmans
  • Lev Khaykovich
چکیده

We report on measurements of three-body recombination loss rates in an ultracold gas of ^{7}Li atoms in the extremely nonuniversal regime where the two-body scattering length vanishes. We show that the loss rate coefficient is well defined and can be described by two-body parameters only: the scattering length a and the effective range R_{e}. We find the rate to be energy independent, and, by connecting our results with previously reported measurements in the universal limit, we cover the behavior of the three-body recombination rate in the whole range from weak to strong two-body interactions. We identify a nontrivial magnetic field value in the nonuniversal regime where the rate should be suppressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-body recombination of ultracold Bose gases using the truncated Wigner method

We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we invest...

متن کامل

Three-body recombination at large scattering lengths in an ultracold atomic gas.

We study three-body recombination in an optically trapped ultracold gas of cesium atoms with precise magnetic control of the s-wave scattering length a. At large positive values of a, we measure the dependence of the rate coefficient on a and confirm the theoretically predicted scaling proportional to a(4). Evidence of recombination heating indicates the formation of very weakly bound molecules...

متن کامل

Three-boson recombination at ultralow temperatures

The effects of trimer continuum resonances are considered in the three-body recombination rate of a Bose system at finite energies for large and negative two-body scattering lengths (a). The thermal average of the rate allows to apply our formula to Bose gases at ultra-low temperatures. We found a good quantitative description of the experimental three-body recombination length of cesium atoms ...

متن کامل

Few-Body Physics in Quantum Gases

Few-body effects play an important role for the understanding of ultracold quantum gases. We make use of an effective field theory approach to investigate various aspects of universal few-body physics close to a Feshbach resonance. That is the regime where the scattering length is large compared to all other length scales of the system and thus determines the observables. It is also the regime ...

متن کامل

Chaos in collapsing Bose-condensed gas

We reinvestigate the dynamics of the grow and collapse of Bose-Einstein condensates in a system of trapped ultracold atoms with negative scattering lengths, and found a new behavior in the long time scale evolution: the number of atoms can go far beyond the static stability limit. The condensed state is described by the solution of the time-dependent nonlinear Schrödinger equation, in a model t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2014